Skip to main content

Engineering Physics

Course Descriptions

Materials Science and Engineering Courses:

MSE 211 Statics and Mechanics of Materials (4 SH). A study of rigid and deformable bodies in static equilibrium, considering both the external forces that lead to the state of static equilibrium and the internal forces responsible for the deformations of solid bodies. Prerequisite: PHY 151. Co-requisite: MTH 152. Offered Fall Semester, alternate years.

MSE 221 Principles of Electrical Engineering (4 SH). An introductory course covering basic principles and applications of electrical engineering. Topics covered include steady-state and transient analysis of electrical networks, frequency response, op-amps, diodes, and transistors. A laboratory is included. Prerequisite: PHY 152. Offered Fall Semester, alternate years.

MSE 231 Science and Engineering of Materials (4 SH). A survey of fundamental concepts and approaches in the study of materials, dealing with atomic structure, mechanical properties, and thermodynamics of materials, along with analysis of specific categories of materials. Prerequisite: PHY 151 OR CHE 117. Offered Spring Semester, alternate years.

MSE 241 Semiconductor Physics (4 SH). An introduction to the fundamentals of solid state physics as applied to semiconductor materials and devices. Prerequisites: PHY 152, MTH 152. Offered Spring Semester, alternate years.

MSE 320 Solid State Chemistry (4 SH). MSE 320 is a detailed study of the chemistry of solid state materials. In particular, this course will reinforce the concepts of crystal lattices, packing in solids, and bonding in solids. The course will also introduce the concepts of synthesis and characterization of solid materials; the electronic, magnetic, and optical properties of solids; defects and nonstoichiometry in solids; mesoporous, microporous, and nanostructured solids; and superconductivity. A research project involving the synthesis and characterization of solids materials will also be part of this course. Prerequisite: CHE 180 and MSE 231, both with a grade of C- or better. Offered Spring Semester, alternate years.

MSE 360 Polymer Chemistry (4 SH). Synthetic polymers can be found in nearly every facet of human life. The applications of organic polymers have extended from clothing to construction materials and from biomedical devices to drug delivery systems. As a result nearly 50% of all chemists will work in polymer science in some capacity over their career. This course will educate students on multiple aspects of polymer chemistry from molecular structures to macromolecular properties to bulk applications. Focus of this course will be on nomenclature, procedures for polymer synthesis, and methods of polymer characterization. This course will also discuss polymer processing and current applications of polymeric materials. A weekly three-hour lab is included. Prerequisite: CHE 262 or MSE 231 with a grade of C- or better. Offered Fall Semester, alternate years. (Also listed as CHE 360.)

Physics Courses:

PHY 151 Principles of Physics I (4 SH). The first semester of an introductory study of physics (mechanics, thermodynamics, electricity, magnetism, waves, light and modern physics). Basic principles used in both semesters are introduced in the first semester. Some basic concepts of calculus will be introduced as needed. A laboratory is included. Co-requisite: MTH 150 or higher. Offered Fall Semester. Meets Scientific Discovery Intellectual Perspective requirement (SD).

PHY 152 Principles of Physics II (4 SH). The second semester of an introductory study of physics (mechanics, thermodynamics, electricity, magnetism, waves, light and modern physics). Calculus methods will be used. A laboratory is included. Prerequisite: PHY 151; Co-requisite: MTH 152 or higher. Offered Spring Semester.

PHY 311 Thermal Physics (4 SH). A study of the behavior of systems containing large numbers of particles. The course emphasizes the analysis of model systems using statistical mechanics. From that analysis, the thermodynamic behavior of real systems can be understood. Prerequisite: PHY 152; Co-requisite: MTH 250. Offered Fall Semester, alternate years.

PHY 313 Modern Physics (4 SH). Modern Physics offers a broad introduction to the major developments in physics in the 20th century. Topics covered include special relativity, wave-particle duality, quantum mechanics, statistical mechanics, solid state physics, nuclear physics, elementary particle physics, and other specialized topics. Prerequisite: PHY 152. Offered Fall Semester, alternate years.

PHY 321, 322 Experimental Physics I, II (2 SH each). An introduction to experimental design and planning, data analysis, and presentation of experimental research results. Each course includes a semester-long individual research project completed collaboratively with the instructor. Prerequisite: PHY 152. Offered Fall/Spring semesters, alternate years.

PHY 331 Computational Physics I (2 SH). An introduction to the use of numerical methods in the analysis of data and the solving of problems in physical science.  Topics covered include least-squares curve fitting, numerical integration of linked systems of differential equations, and function estimation.  Builds on and extends the programming and visualization knowledge introduced in PHY 151 and PHY 152.  Prerequisite: PHY 152;  Co-requisite: MTH 250. Offered Fall Semester, alternate years.

PHY 351 Mechanics (4 SH). An analysis of the motion of individual particles and groups of particles, with an emphasis on the behavior of oscillating systems of particles. In addition to the Newtonian mechanics principles studied in introductory courses, students will learn to use Lagrangian and Hamiltonian approaches to analyzing motion. Prerequisite: PHY 152; Co-requisite: MTH 250. Offered Spring Semester, alternate years.

PHY 601 Physics Capstone I (2 SH). A study of selected topics or problems that require the integration of previous physics and related experiences. The seminar will involve individual and/or group work culminating in an appropriate presentation. Additionally, each student will do preliminary background research and begin work on his/her senior capstone project. Offered Fall Semester.

PHY 602 Physics Capstone II (2 SH). A focused student project which has been approved by the physics faculty. The project culminates in written and oral presentations. Offered Spring Semester.

Supporting Courses:

MTH 152 Calculus II (4 SH). This course will focus on the fundamentals of integral calculus, including techniques and applications of integration. Other topics include infinite series and introductory topics from differential equations. Prerequisite: MTH 150.

MTH 250 Calculus III (4 SH). An introduction to the calculus of several variables. Topics include the geometry of three-dimensional space, partial derivatives, multiple integrals, and vector calculus. Prerequisite: MTH 152.

MTH 253 Differential Equations (4 SH). The study of differential equations and their applications in the natural sciences. Topics include linear differential equations, series solutions, Laplace transformations, systems of equations, an introduction to partial differential equations, boundary value problems and application of differential equations. Prerequisite: MTH 250.

CHE 117 Principles of Chemistry (4 SH). Acourse emphasizing stoichiometry, chemical equilibria, acids and bases, chemical kinetics, thermodynamics, electrochemistry, nuclear phenomena, and interactions of science and society. In the laboratory program students will investigate chemical systems, analyze observations and data, devise explanations, and communicate results. Prerequisites: High school chemistry and an acceptable score on a placement test or completion of CHE 111 or ES 160 with a grade of C- or better. Offered Fall and Spring semesters.

CHE 180 Inorganic Chemistry (4 SH). A study of the energetics of the bonding and reactions of inorganic compounds. Emphasis is given to the periodicity of the chemical and physical properties of the elements. Major themes of the course include effective nuclear charge, lattice energy, charge density, acid/base theories, and the descriptive chemistry of all of the elements. The laboratory includes the investigation of the energetics of reactions, the synthesis and analysis of coordination compounds, qualitative chemistry, and the communication of results. Prerequisite: CHE 117 with a grade of C- or better. Offered Fall and Spring semesters.

CS 151 Principles of Computer Science I (4 SH). A broad introduction to the discipline of computer science, with attention given to many components of the field. Topics include an examination of subfields of computer science, computer representation of data, an introduction to hardware structure, and fundamentals of programming languages. Special emphasis is given to techniques for problem solving and algorithm development, designing and implementing computer programs, and software analysis and verification methods. Prerequisite: prior programming experience recommended.

 

 

What can you do with an Engineering Physics degree?

Imagine yourself a mechanical engineer, electrical engineer, mining engineer, nuclear engineer, chemical engineer, management consultant, technical writer, or researcher.