Possible Exam 1 Questions

1. Create a piecewise function (consisting of only TWO rational functions) that has exactly 3 discontinuities, a removable discontinuity at \(x = -3 \), a jump discontinuity at \(x = 1 \), and an infinite discontinuity at \(x = 5 \). Then verify each type of discontinuity.

2. For the function created in question 1, add a constant to the second rational function to make the function continuous at \(x = 1 \). Then verify that the function is continuous at \(x = 1 \) using the three conditions of continuity.

3. A function can be continuous at \(x = 2 \) without \(f'(2) \) existing. Give two examples of functions having different derivatives that have this property.

4. Find \(y' \) for each of the following:

 a. \(y = \sin x + \cos x + \tan x + \cot x + \sec x + \csc x \)

 b. \(y = \left(x^2 + 5x + 2 \right) \left(\frac{\sin(x^2 + 1)}{x^3 + 5} \right)^7 \)

 c. \(y^4 - x^4 = 11 \) (Also find \(y'' \) for part c.)

5. Evaluate each of the following limits

 a. \(\lim_{x \to 2^+} \frac{x^4 - 2x^2 + 3x - 14}{x - 2} \)

 b. \(\lim_{h \to 0} \frac{(x + h)^4 - x^4}{h} \)

 c. \(\lim_{x \to 3} \frac{\sqrt{5x + 1} - 4}{x - 3} \)

 d. \(\lim_{x \to 0} \frac{x \sin(7x) \cos(5x)}{\tan^2(2x)} \)

6. Use the quotient rule to find the derivative of \(\cot x \).

7. Sketch a graph of a function satisfying all of the following:

 a. \(\lim_{x \to 1} f(x) = 4 \)

 b. \(\lim_{x \to 3} f(x) = 2 \)

 c. \(\lim_{x \to 3} f(x) = 5 \)

 d. \(f(1) = 2 \)

 e. \(\lim_{x \to 5} f(x) = \infty \)

 f. \(\lim_{x \to 5} f(x) = -\infty \)

 g. \(f(3) \) d.n.e.

8. Use the limit definition of the derivative to find the derivative of

 a. \(f(x) = a\sqrt{x} \)

 b. \(f(x) = 4x^2 - 5x + 2 \)

9. Explain how the intermediate value theorem can be used to find the solution to \(x^3 - 4x + 1 = 0 \).

10. Find the equation of the tangent line to the graph of \(y = \sec^3 x + 1 \) when \(x = \frac{\pi}{3} \).