A Brief Review

Organic Chemistry – study of
 • Bonds with
 • > million compounds

Bonding -- 2 ways to achieve

1. Ionic bond
 Ex: \(\text{Na} + \text{Cl} \rightarrow \)

2. Covalent bond
 Ex: \(\text{H} + \text{H} \rightarrow \)

Lewis Structures (molecules/ions): dots = lines =

Common Bonding Patterns

<table>
<thead>
<tr>
<th></th>
<th>Carbon</th>
<th>Nitrogen</th>
<th>Oxygen</th>
<th>Hydrogen</th>
<th>Halogen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bonds</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Lone prs.</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Ex: Draw the Lewis structure for CH$_3$CN

Formal charge: to determine charge on atom or polyatomic ion

\[\text{F.C.} = \# \text{valence e- in neutral atom} - (\text{all unshared e-} + \frac{1}{2} \text{shared e-}) \]

Ex: Determine which atom bears the charge on H$_3$O$^+$
Electronegativity -- Measure of
See Figure 1-6

$\Delta EN = 0.5 - 1.9 \rightarrow$

Dipole moment - () defined as

Ex: $\text{C} - \text{H}$ $\text{O} - \text{H}$ $\text{C} - \text{Cl}$

Note: Polarity of Molecule depends on

Resonance -- when single
 • Valence e⁻

Ex: Acetate ion (CH$_3$CO$_2^-$) \rightarrow 2 possible Lewis Structures
Writing Organic Compounds

<table>
<thead>
<tr>
<th>Compound</th>
<th>Lewis</th>
<th>Condensed</th>
<th>Line-angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>ethane</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pentane</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acetone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cyclohexanol</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Acids & Bases

Bronsted-Lowry:

- Acids \rightarrow
- Bases \rightarrow

\[
\text{HCl} + \text{NaOH} \rightarrow
\]

- **Strong**
- **Weak**

Strength measured by:

\[
\text{HA} + \text{H}_2\text{O} \leftrightarrow
\]

Summer Notes | CHE 261 | Chpt. 1,2 – pg. 3
\[K_a = \]
\[pK_a = \]
\[pK_a \quad \text{acid strength} \]

Stronger acid \rightarrow

Acid-base reactions \rightarrow

What about bases?

Acidity of Organic Acids \rightarrow

4 main factors:

1. **Electronegativity** of atom bonded to acidic H
 - More EN \rightarrow

 Ex: \[\text{H}_3\text{C}—\text{H} \quad \text{HO—H} \]

2. **Size** of atom bonded to acidic H
 - Bigger \rightarrow

 Ex: \[\text{HI} \quad \text{HF} \]

3. **Resonance**
 - Is conjugate base

 Ex: \[\text{CH}_2\text{CH}_2\text{OH} \quad \text{(ethanol)} \]
 \[pK_a = 15.9 \]

 \[\text{CH}_3\text{COOH} \quad \text{(acetic acid)} \]
 \[pK_a = 4.76 \]
4. Inductive Effect

- Positive charge withdraws e- from H—A bond →

\[
\text{H}_3\text{C} - \text{C} - \text{O} - \text{H}
\]

Acids & Bases Take 2

Lewis:

- Acid →
- Base →

\[
\overset{\text{A}}{\text{H}} + \overset{\text{B}}{\text{H}}^+ \rightarrow \text{A} - \text{B}
\]

\[
\overset{\text{H}}{\text{H}} + \overset{\text{N}}{\text{N}}^+ \rightarrow \overset{\text{H}}{\text{H}}\overset{\text{N}}{\text{N}}\overset{\text{H}}{\text{H}}
\]

Curved arrows →

End of Chpt. 1

Shapes of Molecules →

Valence Shell Electron Pair Repulsion Theory (VSEPR)

- Valence e- repel .:
- Unshared e- repel

Ex: CH₄ (methane)

\[
\overset{\text{H}}{\text{H}}\overset{\text{C}}{\text{C}}\overset{\text{H}}{\text{H}}
\]

Summer Notes

CHE 261

Chpt. 1,2 – pg. 5
Lewis Structures only predict shape →

Bonding: Sharing e- by

Sigma (σ) bond – overlap along bonding axis

\[
\begin{array}{c}
\text{H} \\
\text{1s}
\end{array} + \begin{array}{c}
\text{H} \\
\text{1s}
\end{array} \rightarrow \begin{array}{c}
\text{H} \\
\text{H}
\end{array}
\]

\(\text{sigma bond} \)

C, N, O → also use p

Hybridization: \(sp^3, sp^2, sp \)

<table>
<thead>
<tr>
<th>Hybridization</th>
<th>Hybridized orbital</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>s + p + p + p (\rightarrow)</td>
<td></td>
<td>CH(_4)</td>
</tr>
<tr>
<td>s + p + p (\rightarrow)</td>
<td></td>
<td>CH(_2)CH(_2)</td>
</tr>
<tr>
<td>s + p (\rightarrow)</td>
<td></td>
<td>C(_2)H(_2)</td>
</tr>
</tbody>
</table>

Pi (π) bond → sharing of e- by → double bond →

Bond length: triple<
Summary Hybridization

<table>
<thead>
<tr>
<th># bonding “areas”</th>
<th>Hybridization</th>
<th>Bond Types</th>
<th>Angles*</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td>4 – sigma</td>
<td>109.5°</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3 – sigma</td>
<td>120°</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 – pi</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2 – sigma</td>
<td>180°</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 – pi</td>
<td></td>
</tr>
</tbody>
</table>

*Ex: Determine the hybridization and bond angles and label the bond types for hydrogen cyanide (HCN).

Single bonds – allow
→ lots of

Double bonds –
→ results in

Def:

- **Isomer**
- **Constitutional Isomer**
- **Stereoisomer**
- **Others**
- **Geometric**
Molecular dipole moment \(\rightarrow \) is the molecule

Must consider &

Ex: \(\text{C}_4\text{H}_{10} \)

2-butene

Ex: \(\text{CCl}_4 \)

\(\text{CHCl}_3 \)

Why important?

Types of Intermolecular Interations:

1. dipole-dipole

Ex: \(\text{CH}_4 \)

\(\text{CH}_3\text{OH} \)

b. pt. =

b. pt. =

2. London dispersion ()

Ex: \(\text{CHCl}_3 \)

\(\text{CCl}_4 \)

b. pt. =

b. pt. =
3. Hydrogen bonding

Ex: \(\text{CH}_3\text{OCH}_3 \)
 b. pt. =

CH\(_3\)CH\(_2\)OH
 b. pt. =

Solubility → “

Ex: Salt + water
 Salt + gasoline
 Wax + gasoline
 Wax + water

Functional Groups
→ Have specific
→ Gives compound

\[
\text{H}_3\text{C}-\text{C}-\text{H}_3
\]
 Alkane (not true F.G.)

\[
\text{C}==\text{C}
\]
 Alkene

\[
\text{C}==\text{C}
\]
 Alkyne

\[
\begin{array}{c}
\text{C} - \text{O} - \text{H} \\
\end{array}
\]
 Alcohol

\[
\begin{array}{c}
\text{C} == \text{C} \\
\end{array}
\]
 Arene

\[
\begin{array}{c}
\text{C} == \text{C} \\
\end{array}
\]
 Phenol

Summer Notes
CHE 261
Chpt. 1,2 – pg. 9
These groups contain a **Carbonyl Group** (not a functional group):

- **Thiol**
- **Ether**
- **Amine**

Examples:

- Aldehyde
- Ketone
- Carboxylic Acid
- Ester
- Amide
- Acetic Anhydride

Summer Notes

CHE 261

Chpt. 1,2 – pg. 10